Average size of 2-Selmer groups of elliptic curves over function fields
نویسندگان
چکیده
Employing a geometric setting inspired by the proof of the Fundamental Lemma, we study some counting problems related to the average size of 2-Selmer groups and hence obtain an estimate for it.
منابع مشابه
Average Size of 2-selmer Groups of Elliptic Curves, I
In this paper, we study a class of elliptic curves over Q with Qtorsion group Z2×Z2, and prove that the average order of the 2-Selmer groups is bounded.
متن کاملAverage Size of 2-selmer Groups of Elliptic Curves, Ii
In this paper, we consider the average order of the 2-Selmer groups of elliptic curves over Q given by the equation E : y2 = x(x + a)(x + b), where a and b are integers. We show that, with a being fixed, the average order of the 2-Selmer groups of such curves closely depends on a. More exactly, we show that the average order is bounded if |a| is not a square and unbounded if |a| is the square o...
متن کاملElliptic Curves with Complex Multiplication and the Conjecture of Birch and Swinnerton-Dyer
1. Quick Review of Elliptic Curves 2 2. Elliptic Curves over C 4 3. Elliptic Curves over Local Fields 6 4. Elliptic Curves over Number Fields 12 5. Elliptic Curves with Complex Multiplication 15 6. Descent 22 7. Elliptic Units 27 8. Euler Systems 37 9. Bounding Ideal Class Groups 43 10. The Theorem of Coates and Wiles 47 11. Iwasawa Theory and the “Main Conjecture” 50 12. Computing the Selmer G...
متن کاملComplete characterization of the Mordell-Weil group of some families of elliptic curves
The Mordell-Weil theorem states that the group of rational points on an elliptic curve over the rational numbers is a finitely generated abelian group. In our previous paper, H. Daghigh, and S. Didari, On the elliptic curves of the form $ y^2=x^3-3px$, Bull. Iranian Math. Soc. 40 (2014), no. 5, 1119--1133., using Selmer groups, we have shown that for a prime $p...
متن کاملSelmer groups and Mordell-Weil groups of elliptic curves over towers of function fields
In [12] and [13], Silverman discusses the problem of bounding the Mordell-Weil ranks of elliptic curves over towers of function fields. We first prove generalizations of the theorems of those two papers by a different method, allowing non-abelian Galois groups and removing the dependence on Tate’s conjectures. We then prove some theorems about the growth of Mordell-Weil ranks in towers of funct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014